Selama beberapa tahun terakhir, internet telah berkembang dengan cepat seiring dengan perkembangan teknologi. Data percakapan yang terdapat di media sosial dapat dimanfaatkan untuk melihat pola interaksi dan aktor yang paling berperan pada event JGTC 2013 melalui media sosial Twitter. Penelitian ini memanfaatkan big data dari media sosial Twitter yang diperoleh dari Twitter melalui API (Aplication Programming Interface) dengan bantuan teknis dari NoLimitID (perusahaan social media monitoring & analytic tools). Data tersebut kemudian diolah dengan pendekatan Social Network Analysis. Software yang digunakan untuk menghitung dan menvisualisasikan hasil analysis adalah Gephi. Penentuan aktor yang berperan dalam event JGTC 2013 dihitung berdasarkan centrality yang terdiri dari degree centrality, betweenness centrality, closeness centrality, dan eigenvector centrality. Sampel dalam penelitian ini adalah tweet yang berupa interaksi (terdapat mention, baik berupa reply maupun qoute retweet) yang memuat kata 'JGTC' dan '#JGTC36' pada 1 Desember 2013. Hasil penelitian pada event JGTC 2013 terdapat 7624 node (akun) yang terlibat dengan 7445 edge (interaksi) yang terjadi di network tersebut. Aktor (node) yang paling berpengaruh dalam network JGTC secara keseluruhan adalah raisa6690 yang merupakan bintang tamu pengisi acara event JGTC 2013
CITATION STYLE
Oktora, R., & Alamsyah, A. (2017). POLA INTERAKSI DAN AKTOR YANG PALING BERPERAN PADA EVENT JGTC 2013 MELALUI MEDIA SOSIAL TWITTER (STUDI MENGGUNAKAN METODE SOCIAL NETWORK ANALYSIS). Jurnal Manajemen Indonesia, 14(3), 201. https://doi.org/10.25124/jmi.v14i3.370
Mendeley helps you to discover research relevant for your work.