On the Discovery of Precursor Processing

60Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Studies of the biosynthesis of insulin in a human insulinoma beginning in 1965 provided the first evidence for a precursor of insulin, the first such prohormone to be identified. Further studies with isolated rat islets then confirmed that the precursor became labeled more rapidly than insulin and later was converted to insulin by a proteolytic processing system located mainly within the secretory granules of the beta cell and was then stored or secreted. The precursor was designated “proinsulin” in 1967 and was isolated and sequenced from beef and pork sources. These structural studies confirmed that the precursor was a single polypeptide chain which began with the B chain of insulin, continued through a connecting segment of 30–35 amino acids and terminated with the A chain. Paired basic residues were identified at the sites of excision of the C-peptide. Human proinsulin and C-peptide were then similarly obtained and sequenced. The human C-peptide assay was developed and provided a useful tool for measuring insulinlevels indirectly in diabetics treated with insulin. The discovery of other precursor proteins for a variety of peptide hormones, neuropeptides, or plasma proteins then followed, with all having mainly dibasic cleavage sites for processing. The subsequent discovery of a similar biosynthetic pathway in yeast led to the identification of eukaryotic families of specialized processing subtilisin-like endopeptidases coupled with carboxypeptidase B-like exopeptidases. Most neuroendocrine peptides are processed by two specialized members of this family – PC2 and/or PC1/3 – followed by carboxypeptidase E (CPE). This brief report concentrates mainly on the role of insulin biosynthesis in providing a useful early paradigm of precursor processing in the secretory pathway.

Cite

CITATION STYLE

APA

Steiner, D. F. (2011). On the Discovery of Precursor Processing. In Methods in Molecular Biology (Vol. 768, pp. 3–11). Humana Press Inc. https://doi.org/10.1007/978-1-61779-204-5_1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free