In this paper, a static state observer algorithm based on the static equilibrium position is proposed, which can realize accurate control of electric vehicle height adjustment with existing road excitation. The existence of road excitation can lead to deflection variation of the electronically controlled air suspension (ECAS). The use of only dynamic deflection as the reference for the electric vehicle height adjustment will produce great errors. Therefore, this paper provides an observation algorithm, which can realize the accurate control of vehicle height. Firstly, the static equilibrium position equation of suspension is derived according to the theory of hydrodynamics and characteristics of pneumatic chamber. Secondly, a vehicle dynamics model with seven degrees of freedom (7-DOF) is established and the kinetic equations are discretized. Then, the unscented Kalman filter (UKF) algorithm is used to obtain the static equilibrium position of vehicle. According to the vehicle static equilibrium position obtained by UKF, the height of the vehicle is adjusted by using a fuzzy controller. The simulation and experimental results show that this proposed algorithm can realize the control of vehicle height with an accuracy of over 96%, which ensures the excellent driving performance of vehicles under different road conditions.
CITATION STYLE
Gao, Z., Chen, S., Zhao, Y., & Nan, J. (2018). Height adjustment of vehicles based on a static equilibrium position state observation algorithm. Energies, 11(2). https://doi.org/10.3390/en11020455
Mendeley helps you to discover research relevant for your work.