Imidazoline is a five-membered heterocycle derived by the partial reduction of one double bond of the imidazole ring. This work prepared new anion exchange membranes (AEMs) based on imidazoline quaternized polystyrene copolymers bearing N-b-hydroxyethyl oleyl imidazolinium pendent groups to evaluate the application potential for anion exchange membrane fuel cells (AEMFCs). For comparison, an imidazole quaternized polystyrene copolymer was also synthesized. The polymer chemical structure was confirmed by FTIR, NMR, and TGA. In addition, the essential properties of membranes, including ion exchange capacity (IEC), water uptake, and hydroxide conductivity, were measured. The alkaline stabilities of imidazolium-based and imidazolinium-based AEMs were compared by means of the changes in the TGA thermograms, FTIR spectra, and hydroxide conductivity during the alkaline treatment in 1 M KOH at 60◦C for 144 h. The results showed that the imidazolinium-based AEMs exhibited relatively lower hydroxide conductivity (5.77 mS/cm at 70◦C) but much better alkaline stability compared with the imidazolium-based AEM. The imidazoliniumbased AEM (PSVBImn-50) retained 92% of its hydroxide conductivity after the alkaline treatment. Besides, the fuel cell performance of the imidazolium-based and imidazolinium-based AEMs was examined by single-cell tests.
CITATION STYLE
Jheng, L. C., Hsu, C. Y., & Yeh, H. Y. (2021). Anion exchange membranes based on imidazoline quaternized polystyrene copolymers for fuel cell applications. Membranes, 11(11). https://doi.org/10.3390/membranes11110901
Mendeley helps you to discover research relevant for your work.