Atomic layer deposition of amorphous antimony sulfide (a-Sb2S3) as semiconductor sensitizer in extremely thin absorber solar cell

  • Mahuli N
  • Halder D
  • Paul A
  • et al.
8Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Atomic layer deposition of amorphous antimony sulfide (a-Sb2S3) is demonstrated with an alternating exposure of tris(dimethylamino)antimony (TDMASb) and hydrogen sulfide (H2S) at 150 °C in a custom-built viscous flow reactor. Growth mechanism and deposition chemistry are investigated by in situ quartz crystal microbalance and in situ Fourier Transform Infrared spectroscopy. Reaction hypothesis facilitating the binary reaction is established by quantum mechanical density functional theory calculations that essentially support the experimental findings. The developed material is used as a photon harvester in solar cells under extremely thin absorber configuration, with TiO2 and Spiro-OMeTAD as electron and hole transporting layers, respectively. Investigation of charge injection properties with surface photovoltage spectroscopy reveals low but non-negligible density of interfacial (sensitizer/TiO2) electronic defects. The conventional viscous flow reactor configuration is modified to showerhead-type reactor configuration to achieve better uniformity and conformality of a-Sb2S3 on highly porous TiO2 scaffolds. a-Sb2S3 device performance is optimized to achieve the highest power conversion efficiencies of 0.5% while annealed crystalline c-Sb2S3 device reaches power conversion efficiencies of 1.9% under 1 sun illumination.

Cite

CITATION STYLE

APA

Mahuli, N., Halder, D., Paul, A., & Sarkar, S. K. (2020). Atomic layer deposition of amorphous antimony sulfide (a-Sb2S3) as semiconductor sensitizer in extremely thin absorber solar cell. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 38(3). https://doi.org/10.1116/6.0000031

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free