Synthesis of Au-decorated three-phase-mixed TiO2/phosphate modified active carbon nanocomposites as easily-recycled efficient photocatalysts for degrading high-concentration 2,4-DCP

11Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

It is of great significance to fabricate easily-recycled TiO2 photocatalysts with high activity. Herein, dominant-anatase three-phase (anatase/rutile/brookite)-mixed nanosized TiO2 with high photocatalytic activity for degrading a high-concentration of 2,4-DCP has been synthesized via a hydrothermal process with HCl as a phase-directing agent, and interestingly the apparent photoactivity could be greatly improved by decorating Au nanoparticles and then coupling phosphate-treated active carbon. The amount-optimized nanocomposite displays ∼12-fold enhancement in degradation rate constant (k) compared to anatase TiO2. Based on the steady-state surface photovoltage spectra, fluorescence spectra related to the produced ·OH amount, temperature-programmed desorption and O2 electrochemical reduction curves, it is confirmed that the exceptional photoactivity is mainly attributed to the greatly-enhanced charge separation from the phase-mixed composition, and from the decorated Au as electron acceptors and its promotion effects on O2 activation. Moreover, the use of phosphate-modified AC as a support is also positive for efficient photocatalytic reactions by accepting electrons and concentrating the pollutants, with recyclable features. This work provides a feasible strategy to fabricate TiO2-based nano-photocatalysts for degrading high-concentration pollutants to remediate the environment.

Cite

CITATION STYLE

APA

Ali, S., Li, Z., Ali, W., Zhang, Z., Wei, M., Qu, Y., & Jing, L. (2019). Synthesis of Au-decorated three-phase-mixed TiO2/phosphate modified active carbon nanocomposites as easily-recycled efficient photocatalysts for degrading high-concentration 2,4-DCP. RSC Advances, 9(66), 38414–38421. https://doi.org/10.1039/c9ra08286g

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free