This work has explored the potential use of lignocellulosic agricultural residues like soy stalk, corn stalk, wheat straw, and perennial grasses, like switchgrass and miscanthus, as reinforcement for engineering value-added biobased composite materials. The effect of incorporating 30 wt % lignocellulosic fibers into a biodegradable polymer matrix comprising a pre-blend of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(butylene adipate-coterephthalate) (PBAT) has been investigated. Results of this work explain that fiber chemical composition and fiber length distribution provide a complementary effect on the mechanical and thermal properties of the resulting biobased composites. Comparing the effects of all the fiber types, miscanthus (MS)-based composites, showed slightly higher tensile strength, and Young's modulus improved by 104%. The highest heat deflection temperature of 110 °C was obtained with PHBV/PBAT/MS composites. This study has revealed prospects for hybridization of these lignocellulosic fibers to fabricate hybrid composites with enhanced performance. © 2013 American Chemical Society.
CITATION STYLE
Nagarajan, V., Mohanty, A. K., & Misra, M. (2013). Sustainable green composites: Value addition to agricultural residues and perennial grasses. ACS Sustainable Chemistry and Engineering, 1(3), 325–333. https://doi.org/10.1021/sc300084z
Mendeley helps you to discover research relevant for your work.