Effects of Different Ammonia Concentrations on Pulmonary Microbial Flora, Lung Tissue Mucosal Morphology, Inflammatory Cytokines, and Neurotransmitters of Broilers

  • Wang G
  • Liu Q
  • Zhou Y
  • et al.
N/ACitations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Atmospheric ammonia is one of the main environmental stressors affecting the performance of broilers. Previous studies demonstrated that high levels of ammonia altered pulmonary microbiota and induced inflammation. Research into the lung–brain axis has been increasing in recent years. However, the molecular mechanisms in pulmonary microbiota altered by ambient ammonia exposure on broilers and the relationship between microflora, inflammation, and neurotransmitters are still unknown. In this study, a total of 264 Arbor Acres commercial meal broilers (21 days old) were divided into 4 treatment groups (0, 15, 25, and 35 ppm group) with 6 replicates of 11 chickens for 21 days. At 7 and 21 D during the trial period, the lung tissue microflora was evaluated by 16S rDNA sequencing, and the content of cytokines (IL-1β, IL-6, and IL-10) and norepinephrine (NE), 5-hydroxytryptamine (5-HT) in lung tissue were measured. Correlation analysis was established among lung tissue microflora diversity, inflammatory cytokines, and neurotransmitters. Results showed that the broilers were not influenced after exposure to 15 ppm ammonia, while underexposure of 25 and 35 ppm ammonia resulted in significant effects on pulmonary microflora, inflammatory cytokines, and neurotransmitters. After exposure to ammonia for 7 and 21 days, both increased the proportion of Proteobacteria phylum and the contents of IL-1β and decreased the content of 5-HT. After exposure to ammonia for 7 days, the increase in Proteobacteria in lung tissue was accompanied by a decrease in 5-HT and an increase in IL-1β. In conclusion, the microflora disturbance caused by the increase in Proteobacteria in lung tissue may be the main cause of the changes in inflammatory cytokines (IL-1β) and neurotransmitters (5-HT), and the damage caused by ammonia to broiler lungs may be mediated by the lung–brain axis.

Cite

CITATION STYLE

APA

Wang, G., Liu, Q., Zhou, Y., Feng, J., & Zhang, M. (2022). Effects of Different Ammonia Concentrations on Pulmonary Microbial Flora, Lung Tissue Mucosal Morphology, Inflammatory Cytokines, and Neurotransmitters of Broilers. Animals, 12(3), 261. https://doi.org/10.3390/ani12030261

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free