Neural entrainment via perceptual inferences

2Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Entrainment depends on sequential neural phase reset by regular stimulus onset, a temporal parameter. Entraining to sequences of identical stimuli also entails stimulus feature predictability, but this component is not readily separable from temporal regularity. To test if spectral regularities concur with temporal regularities in determining the strength of auditory entrainment, we devised sound sequences that varied in conditional perceptual inferences based on deviant sound repetition probability: strong inference (100% repetition probability: If a deviant appears, then it will repeat), weak inference (75% repetition probability) and no inference (50%: A deviant may or may not repeat with equal probability). We recorded EEG data from 15 young human participants pre-attentively listening to the experimental sound sequences delivered either isochronously or anisochronously (±20% jitter), at both delta (1.67 Hz) and theta (6.67 Hz) stimulation rates. Strong perceptual inferences significantly enhanced entrainment at either stimulation rate and determined positive correlations between precision in phase distribution at the onset of deviant trials and entrained power. We conclude that both spectral predictability and temporal regularity govern entrainment via neural phase control.

Cite

CITATION STYLE

APA

Tavano, A., Maess, B., Poeppel, D., & Schröger, E. (2022). Neural entrainment via perceptual inferences. European Journal of Neuroscience, 55(11–12), 3277–3287. https://doi.org/10.1111/ejn.15630

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free