Dendritic spines are known to be extremely motile, providing a structural mechanism for synaptic plasticity. Actin filaments are thought to be responsible for the changes in the shape of spines. We tested our hypothesis that drebrin, an actin-binding protein, is a regulator of spine shape. In high-density long-term primary cultures of rat cerebral cortex neurons, drebrin was colocalized with actin filaments at spines. We introduced drebrin tagged with green fluorescent protein (GFP) into these neurons to test the ability of exogenous drebrin to localize at spines and the effect of overexpression of drebrin on spine shape. We observed that exogenous drebrin indeed accumulated in spines. But when the actin-binding domain of drebrin was deleted, the protein was distributed in both spines and dendritic shafts, indicating that accumulation of drebrin in the spines required its actin-binding activity. Statistical analysis of the lengths of spines as determined from confocal laser microscopic images revealed that the spines were significantly longer in GFP-drebrin-expressing neurons than in GFP-expressing neurons. The longer spines labeled with GFP-drebrin were demonstrated to be postsynaptic by double labeling of the presynaptic terminals with antibody against synaptophysin. These results directly indicate that drebrin binds to actin filaments at dendritic spines and alters spine shape.
CITATION STYLE
Hayashi, K., & Shirao, T. (1999). Change in the shape of dendritic spines caused by overexpression of drebrin in cultured cortical neurons. Journal of Neuroscience, 19(10), 3918–3925. https://doi.org/10.1523/jneurosci.19-10-03918.1999
Mendeley helps you to discover research relevant for your work.