Cost effectiveness of intermittent screening followed by treatment versus intermittent preventive treatment during pregnancy in West Africa: Analysis and modelling of results from a non-inferiority trial

10Citations
Citations of this article
250Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Emergence of high-grade sulfadoxine-pyrimethamine (SP) resistance in parts of Africa has led to growing concerns about the efficacy of intermittent preventive treatment of malaria during pregnancy (IPTp) with SP. The incremental cost-effectiveness of intermittent screening and treatment (ISTp) with artemether-lumefantrine (AL) as an alternative strategy to IPTp-SP was estimated followed by a simulation of the effects on cost-effectiveness of decreasing efficacy of IPTp-SP due to SP resistance. The analysis was based on results from a multi-centre, non-inferiority trial conducted in West Africa. Methods: A decision tree model was analysed from a health provider perspective. Model parameters for all trial countries with appropriate ranges and distributions were used in a probabilistic sensitivity analysis. Simulations were performed in hypothetical cohorts of 1000 pregnant women who received either ISTp-AL or IPTp-SP. In addition a cost-consequences analysis was conducted. Trial estimates were used to calculate disability-adjusted-life-years (DALYs) for low birth weight and severe/moderate anaemia (both shown to be non-inferior for ISTp-AL) and clinical malaria (inferior for ISTp-AL). Cost estimates were obtained from observational studies, health facility costings and public procurement databases. Results were calculated as incremental cost per DALY averted. Finally, the cost-effectiveness changes with decreasing SP efficacy were explored by simulation. Results: Relative to IPTp-SP, delivering ISTp-AL to 1000 pregnant women cost US$ 4966.25 more (95 % CI US$ 3703.53; 6376.83) and led to a small excess of 28.36 DALYs (95 % CI -75.78; 134.18), with LBW contributing 81.3 % of this difference. The incremental cost-effectiveness ratio was -175.12 (95 % CI -1166.29; 1267.71) US$/DALY averted. Simulations show that cost-effectiveness of ISTp-AL increases as the efficacy of IPTp-SP decreases, though the specific threshold at which ISTp-AL becomes cost-effective depends on assumptions about the contribution of bed nets to malaria control, bed net coverage and the willingness-to-pay threshold used. Conclusions: At SP efficacy levels currently observed in the trial settings it would not be cost-effective to switch from IPTp-SP to ISTp-AL, mainly due to the substantially higher costs of ISTp-AL and limited difference in outcomes. The modelling results indicate thresholds below which IPT-SP efficacy must fall for ISTp-AL to become a cost-effective option for the prevention of malaria in pregnancy.

Cite

CITATION STYLE

APA

Fernandes, S., Sicuri, E., Halimatou, D., Akazili, J., Boiang, K., Chandramohan, D., … Hanson, K. (2016). Cost effectiveness of intermittent screening followed by treatment versus intermittent preventive treatment during pregnancy in West Africa: Analysis and modelling of results from a non-inferiority trial. Malaria Journal, 15(1). https://doi.org/10.1186/s12936-016-1539-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free