Candida albicans is associated with serious infections in immunocompromised patients. Terpenes are natural-product derivatives, widely studied as antifungal alternatives. In a previous study reported by our group, the antifungal activity of α-pinene against C. albicans was verified; α-pinene presented an MIC between 128–512 µg/mL. In this study, we evaluate time-kill, a mechanism of action using in silico and in vitro tests, anti-biofilm activity against the Candida albicans, and toxicity against human cells (HaCaT). Results from the molecular-docking simulation demonstrated that thymidylate synthase (−52 kcal mol−1), and δ-14-sterol reductase (−44 kcal mol−1) presented the best interactions. Our in vitro results suggest that α-pinene’s antifungal activity involves binding to ergosterol in the cellular membrane. In the time-kill assay, the antifungal activity was not time-dependent, and also inhibited biofilm formation, while rupturing up to 88% of existing biofilm. It was non-cytotoxic to human keratinocytes. Our study supports α-pinene as a candidate to treat fungal infections caused by C. albicans.
CITATION STYLE
Bomfim de Barros, D., de Oliveira e Lima, L., Alves da Silva, L., Cavalcante Fonseca, M., Ferreira, R. C., Diniz Neto, H., … da Silva, M. V. (2023). α-Pinene: Docking Study, Cytotoxicity, Mechanism of Action, and Anti-Biofilm Effect against Candida albicans. Antibiotics, 12(3). https://doi.org/10.3390/antibiotics12030480
Mendeley helps you to discover research relevant for your work.