Local adaptation and oceanographic connectivity patterns explain genetic differentiation of a marine diatom across the North Sea-Baltic Sea salinity gradient

104Citations
Citations of this article
158Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Abstract Drivers of population genetic structure are still poorly understood in marine micro-organisms. We exploited the North Sea-Baltic Sea transition for investigating the seascape genetics of a marine diatom, Skeletonema marinoi. Eight polymorphic microsatellite loci were analysed in 354 individuals from ten locations to analyse population structure of the species along a 1500-km-long salinity gradient ranging from 3 to 30 psu. To test for salinity adaptation, salinity reaction norms were determined for sets of strains originating from three different salinity regimes of the gradient. Modelled oceanographic connectivity was compared to directional relative migration by correlation analyses to examine oceanographic drivers. Population genetic analyses showed distinct genetic divergence of a low-salinity Baltic Sea population and a high-salinity North Sea population, coinciding with the most evident physical dispersal barrier in the area, the Danish Straits. Baltic Sea populations displayed reduced genetic diversity compared to North Sea populations. Growth optima of low salinity isolates were significantly lower than those of strains from higher native salinities, indicating local salinity adaptation. Although the North Sea-Baltic Sea transition was identified as a barrier to gene flow, migration between Baltic Sea and North Sea populations occurred. However, the presence of differentiated neutral markers on each side of the transition zone suggests that migrants are maladapted. It is concluded that local salinity adaptation, supported by oceanographic connectivity patterns creating an asymmetric migration pattern between the Baltic Sea and the North Sea, determines genetic differentiation patterns in the transition zone.

Cited by Powered by Scopus

This article is free to access.

This article is free to access.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Sjöqvist, C., Godhe, A., Jonsson, P. R., Sundqvist, L., & Kremp, A. (2015). Local adaptation and oceanographic connectivity patterns explain genetic differentiation of a marine diatom across the North Sea-Baltic Sea salinity gradient. Molecular Ecology, 24(11), 2871–2885. https://doi.org/10.1111/mec.13208

Readers over time

‘15‘16‘17‘18‘19‘20‘21‘22‘23‘24‘25015304560

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 73

68%

Researcher 31

29%

Professor / Associate Prof. 3

3%

Lecturer / Post doc 1

1%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 73

61%

Environmental Science 22

18%

Biochemistry, Genetics and Molecular Bi... 20

17%

Earth and Planetary Sciences 4

3%

Article Metrics

Tooltip
Social Media
Shares, Likes & Comments: 25

Save time finding and organizing research with Mendeley

Sign up for free
0