Combined Process of Biogenic Manganese Oxide and Manganese-Oxidizing Microalgae for Improved Diclofenac Removal Performance: Two Different Kinds of Synergistic Effects

3Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Biogenic manganese oxides (Bio-MnOx) have attracted considerable attention for removing pharmaceutical contaminants (PhCs) due to their high oxidation capacity and environmental friendliness. Mn-oxidizing microalgae (MnOMs) generate Bio-MnOx with low energy and organic nutrients input and degrade PhCs. The combined process of MnOMs and Bio-MnOx exhibits good prospects for PhCs removal. However, the synergistic effects of MnOMs and Bio-MnOx in PhCs removal are still unclear. The performance of MnOMs/Bio-MnOx towards diclofenac (DCF) removal was evaluated, and the mechanism was revealed. Our results showed that the Bio-MnOx produced by MnOMs were amorphous nanoparticles, and these MnOMs have a good Mn2+ tolerance and oxidation efficiency (80–90%) when the Mn2+ concentration is below 1.00 mmol/L. MnOMs/Bio-MnOx significantly promotes DCF (1 mg/L) removal rate between 0.167 ± 0.008 mg/L·d (by MnOMs alone) and 0.125 ± 0.024 mg/L·d (by Bio-MnOx alone) to 0.250 ± 0.016 mg/L·d. The superior performance of MnOMs/Bio-MnOx could be attributed to the continuous Bio-MnOx regeneration and the sharing of DCF degradation intermediates between Bio-MnOx and MnOMs. Additionally, the pathways of DCF degradation by Bio-MnOx and MnOMs were proposed. This work could shed light on the synergistic effects of MnOMs and Bio-MnOx in PhCs removal and guide the development of MnOMs/Bio-MnOx processes for removing DCF or other PhCs from wastewater.

Cite

CITATION STYLE

APA

Wang, Q., Liao, C., Zhao, J., Zeng, G., Liu, W., Gao, P., … Du, J. (2022). Combined Process of Biogenic Manganese Oxide and Manganese-Oxidizing Microalgae for Improved Diclofenac Removal Performance: Two Different Kinds of Synergistic Effects. Toxics, 10(5). https://doi.org/10.3390/toxics10050230

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free