PanRV: Pangenome-reverse vaccinology approach for identifications of potential vaccine candidates in microbial pangenome

68Citations
Citations of this article
136Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: A revolutionary diversion from classical vaccinology to reverse vaccinology approach has been observed in the last decade. The ever-increasing genomic and proteomic data has greatly facilitated the vaccine designing and development process. Reverse vaccinology is considered as a cost-effective and proficient approach to screen the entire pathogen genome. To look for broad-spectrum immunogenic targets and analysis of closely-related bacterial species, the assimilation of pangenome concept into reverse vaccinology approach is essential. The categories of species pangenome such as core, accessory, and unique genes sets can be analyzed for the identification of vaccine candidates through reverse vaccinology. Results: We have designed an integrative computational pipeline term as "PanRV" that employs both the pangenome and reverse vaccinology approaches. PanRV comprises of four functional modules including i) Pangenome Estimation Module (PGM) ii) Reverse Vaccinology Module (RVM) iii) Functional Annotation Module (FAM) and iv) Antibiotic Resistance Association Module (ARM). The pipeline is tested by using genomic data from 301 genomes of Staphylococcus aureus and the results are verified by experimentally known antigenic data. Conclusion: The proposed pipeline has proved to be the first comprehensive automated pipeline that can precisely identify putative vaccine candidates exploiting the microbial pangenome. PanRV is a Linux based package developed in JAVA language. An executable installer is provided for ease of installation along with a user manual at https://sourceforge.net/projects/panrv2/.

Cite

CITATION STYLE

APA

Naz, K., Naz, A., Ashraf, S. T., Rizwan, M., Ahmad, J., Baumbach, J., & Ali, A. (2019). PanRV: Pangenome-reverse vaccinology approach for identifications of potential vaccine candidates in microbial pangenome. BMC Bioinformatics, 20(1). https://doi.org/10.1186/s12859-019-2713-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free