Physiological functions of the water-water cycle (Mehler reaction) and the cyclic electron flow around PSI in rice leaves

180Citations
Citations of this article
181Readers
Mendeley users who have this article in their library.

Abstract

Changes in chlorophyll fluorescence, P700+-absorbance and gas exchange during the induction phase and steady state of photosynthesis were simultaneously examined in rice (Oryza sativa L.), including the rbcS antisense plants. The quantum yield of photosystem II (ΦPSII) increased more rapidly than CO2 assimilation in 20% O2. This rapid increase in ΦPSII resulted from the electron flux through the water-water cycle (WWC) because of its dependency on O2. The electron flux of WWC reached a maximum just after illumination, and rapidly generated non-photochemical quenching (NPQ). With increasing CO2 assimilation, the electron flux of WWC and NPQ decreased. In 2% O2, WWC scarcely operated and ΦPSI was always higher than ΦPSII. This suggested that cyclic electron flow around PSI resulted in the formation of NPQ, which remained at higher levels in 2% O2. The electron flux of WWC in the rbcS antisense plants was lower, but these plants always showed a higher NPQ. This was also caused by the operation of the cyclic electron flow around PSI because of a higher ratio of ΦPSI/ΦPSII, irrespective of O2 concentration. The results indicate that WWC functions as a starter of photosynthesis by generating ΔpH across thylakoid membranes for NPQ formation, supplying ATP for carbon assimilation. However, WWC does not act to maintain a high NPQ, and ΦPSII is down-regulated by ΔpH generated via the cyclic electron flow around PSI.

Cite

CITATION STYLE

APA

Makino, A., Miyake, C., & Yokota, A. (2002). Physiological functions of the water-water cycle (Mehler reaction) and the cyclic electron flow around PSI in rice leaves. Plant and Cell Physiology, 43(9), 1017–1026. https://doi.org/10.1093/pcp/pcf124

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free