Resumo Neurônios respondem a estímulos externos emitindo sequências de potenciais de ação (trens de disparos). Desse modo, pode-se dizer que o trem de disparos é a resposta neuronal a um estímulo de entrada. Potenciais de ação são fenômenos do tipo “tudo ou nada”, isto é, um trem de disparos pode ser representado por uma sequência de zeros e uns. No contexto da teoria da informação, pode-se então questionar: quanta informação acerca do estímulo externo o trem de disparos carrega? Ou ainda, quais aspectos do estímulo são codificados pela resposta neuronal? Neste artigo, faz-se uma introdução à teoria da informação em que são apresentados aspectos históricos, conceitos fundamentais da teoria e aplicações à neurociência. A conexão com a neurociência é feita com o uso de demonstrações e discussões de diferentes métodos da teoria da informação. Exemplos são fornecidos com o uso de simulações computacionais de dois modelos de neurônios, o neurônio Poisson e o neurônio integra-e-dispara, e um modelo de rede de autômatos celulares. No ultimo caso, demonstra-se como se pode utilizar medidas da teoria da informação para reconstruir a matriz de conectividade de uma rede. Todos os códigos utilizados para estas simulações foram disponibilizados publicamente na plataforma GitHub, acessíveis pelo url: github.com/ViniciusLima94/ticodigoneural.Abstract Neurons respond to external stimuli by emitting sequences of action potentials (spike trains). In this way, one can say that the spike train is the neuronal response to an input stimulus. Action potentials are “all-or-none” phenomena, which means that a spike train can be represented by a sequence of zeros and ones. In the context of information theory, one can then ask: how much information about a given stimulus the spike train conveys? Or rather, what aspects of the stimulus are encoded by the neuronal response? In this article, an introduction to information theory is presented which consists of historical aspects, fundamental concepts of the theory, and applications to neuroscience. The connection to neuroscience is made with the use of demonstrations and discussions of different methods of the theory of information. Examples are given through computer simulations of two neuron models, the Poisson neuron and the integrate-and-fire neuron, and a cellular automata network model. In the latter case, it is shown how one can use information theory measures to retrieve the connectivity matrix of a network. All codes used in the simulations were made publicly available at the GitHub platform and are accessible trough the url: github.com/ViniciusLima94/ticodigoneural.
CITATION STYLE
Cordeiro, V. L., Pena, R. F. de O., Ceballos, C. A. C., Shimoura, R. O., & Roque, A. C. (2018). Aplicações da teoria da informação à neurociência. Revista Brasileira de Ensino de Física, 41(2). https://doi.org/10.1590/1806-9126-rbef-2018-0197
Mendeley helps you to discover research relevant for your work.