Biological and statistical processes jointly drive population aggregation: Using host– parasite interactions to understand taylor’s power law

17Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The macroecological pattern known as Taylor’s power law (TPL) represents the pervasive tendency of the variance in population density to increase as a power function of the mean. Despite empirical illustrations in systems ranging from viruses to vertebrates, the biological significance of this relationship continues to be debated. Here we combined collection of a unique dataset involving 11 987 amphibian hosts and 332 684 trematode parasites with experimental measurements of core epidemiological outcomes to explicitly test the contributions of hypothesized biological processes in driving aggregation. After using feasible set theory to account for mechanisms acting indirectly on aggregation and statistical constraints inherent to the data, we detected strongly consistent influences of host and parasite species identity over 7 years of sampling. Incorporation of field-based measurements of host body size, its variance and spatial heterogeneity in host density accounted for host identity effects, while experimental quantification of infection competence (and especially virulence from the 20 most common host–parasite combina-tions) revealed the role of species-by-environment interactions. By uniting constraint-based theory, controlled experiments and community-based field surveys, we illustrate the joint influences of biological and statistical processes on parasite aggregation and emphasize their importance for understanding population regulation and ecological stability across a range of systems, both infectious and free-living.

Cite

CITATION STYLE

APA

Johnson, P. T. J., & Wilber, M. Q. (2017). Biological and statistical processes jointly drive population aggregation: Using host– parasite interactions to understand taylor’s power law. Proceedings of the Royal Society B: Biological Sciences, 284(1863). https://doi.org/10.1098/rspb.2017.1388

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free