Produk pertanian kentang menjadi sangat penting karena termasuk makanan utama bagi manusia. Kentang memiliki kandungan karbohidrat yang menjadikanya sebagai makanan utama. Dalam mengelola pertanian kentang ini tentu memiliki beberapa kendala diantaranya adalah penyakit yang menyerang pada daun kentang yang jika dibiarkan akan menghasilkan produksi yang buruk atau bahkan gagal panen. Late blight dan early blight adalah penyakit yang sering ditemui pada daun kentang. Penyakit ini memiliki gejala masing-masing sehingga para petani dapat melakukan pencegahan jika melihat gejala pada daun kentang, tetapi langkah ini memliki kelemahan yaitu proses identifikasi yang lama, dan jika penanganan pada penyakit daun ini sangat lambat akan mengakibatkan penambahan biaya perawatan. Dengan memanfaatkan teknologi yaitu berupa pengolahan citra digital maka hal ini bisa diatasi, jadi pada penelitian ini akan mengusulkan metode yang tepat dalam mendeteksi penyakit pada daun kentang. Klasifikasi akan dilakukan dengan tiga kelas berupa daun sehat, early blight, dan late blight menggunakan metode Deep Learning mengguanakan arsitektur Convolutional Neural Network (CNN). Hasil pada peneltian ini dianggap baik karena pada epoch ke 10 dengan batch size 20 menghasilkan training akurasi 95% dan validation accuracy 94%.Kata Kunci—Penyakit daun kentang, late blight, early blight, identifikasi, CNNPotato agricultural products are essential because they are the leading food. Potatoes have carbohydrate content, which makes them the leading food for humans. But in carrying out this potato farming certainly has several obstacles, including the disease that attacks the potato leaves which if left unchecked will result in poor production or even crop failure. late blight and early blight are diseases that are often found in potato leaves. This disease has its own symptoms so that farmers can take precautions if they see symptoms on potato leaves, but this step has a weakness that is a long identification process, and if the handling of this leaf disease is very slow will result in additional maintenance costs. By utilizing technology in the form of digital image processing, this can be overcome, so this research will propose an appropriate method in detecting diseases in the leaves of potato plants. Classification will be carried out with three classes in the form of healthy leaves, early blight, and late blight using the Convolutional Neural Network (CNN) algorithm. The results of this research are considered good because on the 10th epoch with batch size 20 produces 95% accuracy training and 94% validation accuracy.Keywords—Potato leaf disease, late blight, early blight, identification, CNN
CITATION STYLE
Rozaqi, A. J., Sunyoto, A., & Arief, M. rudyanto. (2021). Deteksi Penyakit Pada Daun Kentang Menggunakan Pengolahan Citra dengan Metode Convolutional Neural Network. Creative Information Technology Journal, 8(1), 22. https://doi.org/10.24076/citec.2021v8i1.263
Mendeley helps you to discover research relevant for your work.