This paper presents a wide dynamic-range CMOS rectifier with high efficiency and high sensitivity for RF energy harvesting. A new adaptive-biasing scheme is implemented using stacking diodes with dynamic threshold voltage to mitigate the reverse-leakage current of the NMOS rectifying devices at high RF power levels. The proposed design employs the adaptive-biasing technique to control the conduction of the PMOS rectifying devices with self-bulk biasing of the feedback diodes to minimize the leakage current. The proposed novel techniques extend the dynamic range of the RF-to-DC power converter with high efficiency, which is 17 times better than a conventional cross-coupled rectifier. The prototype is implemented using a standard 65 nm CMOS technology and occupies a 0.0093 mm2 active area. The proposed design achieves a peak power conversion efficiency (peak PCE) of 73%, −18.8 dBm 1-V sensitivity, and a superb dynamic range of 17.3 dB with efficiency greater than 80% of its peak PCE, which outperforms the state-of-the-art RF CMOS rectifiers, when operating at UHF 900 MHz with a 100-KΩ load.
CITATION STYLE
Alhoshany, A. (2022). A 900 MHz, Wide-Input Range, High-Efficiency, Differential CMOS Rectifier for Ambient Wireless Powering. Sensors, 22(3). https://doi.org/10.3390/s22030974
Mendeley helps you to discover research relevant for your work.