SchizoGoogLeNet: The GoogLeNet-Based Deep Feature Extraction Design for Automatic Detection of Schizophrenia

13Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Schizophrenia (SZ) is a severe and prolonged disorder of the human brain where people interpret reality in an abnormal way. Traditional methods of SZ detection are based on handcrafted feature extraction methods (manual process), which are tedious and unsophisticated, and also limited in their ability to balance efficiency and accuracy. To solve this issue, this study designed a deep learning-based feature extraction scheme involving the GoogLeNet model called "SchizoGoogLeNet"that can efficiently and automatically distinguish schizophrenic patients from healthy control (HC) subjects using electroencephalogram (EEG) signals with improved performance. The proposed framework involves multiple stages of EEG data processing. First, this study employs the average filtering method to remove noise and artifacts from the raw EEG signals to improve the signal-to-noise ratio. After that, a GoogLeNet model is designed to discover significant hidden features from denoised signals to identify schizophrenic patients from HC subjects. Finally, the obtained deep feature set is evaluated by the GoogleNet classifier and also some renowned machine learning classifiers to find a sustainable classification method for the obtained deep feature set. Experimental results show that the proposed deep feature extraction model with a support vector machine performs the best, producing a 99.02% correct classification rate for SZ, with an overall accuracy of 98.84%. Furthermore, our proposed model outperforms other existing methods. The proposed design is able to accurately discriminate SZ from HC, and it will be useful for developing a diagnostic tool for SZ detection.

Cite

CITATION STYLE

APA

Siuly, S., Li, Y., Wen, P., & Alcin, O. F. (2022). SchizoGoogLeNet: The GoogLeNet-Based Deep Feature Extraction Design for Automatic Detection of Schizophrenia. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/1992596

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free