Microbial asymmetric hydrolysis of 3-substituted glutaric acid diamides

13Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Aims: Micro-organisms were screened for their ability to produce (R)-3-(4-chlorophenyl) glutaric acid monoamide (CGM) from 3-(4-chlorophenyl) glutaric acid diamide (CGD) through stereoselective hydrolysis. (R)-CGM is a useful synthetic intermediate for arbaclofen. Methods and Results: Four CGD-assimilating micro-organisms were found to be potential catalysts for (R)-CGM production. Among these micro-organisms, Comamonas sp. KNK3-7 (NITE BP-963) produced (R)-CGM with the highest optical purity [98·7% enantiomeric excess (e.e.)] and was selected as the most promising strain. In addition, Comamonas sp. KNK3-7 could asymmetrically hydrolyse 3-isobutyl glutaric acid diamide (IBD) to produce (R)-3-isobutyl glutaric acid monoamide [(R)-IBM] with high optical purity (>99·0% e.e.). Conclusion: The synthesis of a (R)-3-substituted glutaric acid monoamide by desymmetrization of 3-substituted glutaric acid diamide with a micro-organism and an enzyme has not been previously reported. This finding indicates the possibility of the preparation of a variety of optically active 3-substituted glutaric acid monoamides using the amidase from Comamonas sp. KNK3-7. Significance and Impact of the Study: The amidase from Comamonas sp. KNK3-7 may be useful for the chemoenzymatic synthesis of various kinds of chiral gamma-aminobutyric acids and may be used in a 'green' process to produce gamma-aminobutyric acids. © 2013 The Society for Applied Microbiology.

Cite

CITATION STYLE

APA

Nojiri, M., Uekita, K., Ohnuki, M., Taoka, N., & Yasohara, Y. (2013). Microbial asymmetric hydrolysis of 3-substituted glutaric acid diamides. Journal of Applied Microbiology, 115(5), 1127–1133. https://doi.org/10.1111/jam.12309

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free