Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris

128Citations
Citations of this article
125Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The industrial yeast Pichia pastoris has been harnessed extensively for production of proteins, and it is attracting attention as a chassis cell factory for production of chemicals. However, the lack of synthetic biology tools makes it challenging in rewiring P. pastoris metabolism. We here extensively engineered the recombination machinery by establishing a CRISPR-Cas9 based genome editing platform, which improved the homologous recombination (HR) efficiency by more than 54 times, in particular, enhanced the simultaneously assembly of multiple fragments by 13.5 times. We also found that the key HR-relating gene RAD52 of P. pastoris was largely repressed in compared to that of Saccharomyces cerevisiae. This gene editing system enabled efficient seamless gene disruption, genome integration and multiple gene assembly with positive rates of 68-90%. With this efficient genome editing platform, we characterized 46 potential genome integration sites and 18 promoters at different growth conditions. This library of neutral sites and promoters enabled two-factorial regulation of gene expression and metabolic pathways and resulted in a 30-fold range of fatty alcohol production (12.6-380 mg/l). The expanding genetic toolbox will facilitate extensive rewiring of P. pastoris for chemical production, and also shed light on engineering of other non-conventional yeasts.

Cite

CITATION STYLE

APA

Cai, P., Duan, X., Wu, X., Gao, L., Ye, M., & Zhou, Y. J. (2021). Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris. Nucleic Acids Research, 49(13), 7791–7805. https://doi.org/10.1093/nar/gkab535

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free