Floral nectar contains secondary compounds with antimicrobial properties that can affect not only plant-pollinator interactions, but also interactions between pollinators and their parasites. Although recent work has shown that consumption of plant secondary compounds can reduce pollinator parasite loads, little is known about the effects of dosage or compound combinations. We used the generalist pollinator Bombus impatiens and its obligate gut parasite Crithidia bombi to study the effects of nectar chemistry on host-parasite interactions. In two experiments we tested (1) whether the secondary compounds thymol and nicotine act synergistically to reduce parasitism, and (2) whether dietary thymol concentration affects parasite resistance. In both experiments, uninfected Bombus impatiens were inoculated with Crithidia and then fed particular diet treatments for 7 days, after which infection levels were assessed. In the synergism experiment, thymol and nicotine alone and in combination did not significantly affect parasite load or host mortality. However, the thymol-nicotine combination treatment reduced log-transformed parasite counts by 30% relative to the control group (P = 0.08). For the experiment in which we manipulated thymol concentration, we found no significant effect of any thymol concentration on Crithidia load, but moderate (2 ppm) thymol concentrations incurred a near-significant increase in mortality (P = 0.054). Our results tentatively suggest the value of a mixed diet for host immunity, yet contrast with research on the antimicrobial activity of dietary thymol and nicotine in vertebrate and other invertebrate systems. We suggest that future research evaluate genetic variation in Crithidia virulence, multi-strain competition, and Crithidia interactions with the gut microbe community that may mediate antimicrobial activities of secondary compounds.
CITATION STYLE
Biller, O. M., Adler, L. S., Irwin, R. E., McAllister, C., & Palmer-Young, E. C. (2015). Possible synergistic effects of thymol and nicotine against Crithidia bombi parasitism in bumble bees. PLoS ONE, 10(12). https://doi.org/10.1371/journal.pone.0144668
Mendeley helps you to discover research relevant for your work.