Computational identification of MoRFs in protein sequences using Hierarchical application of bayes rule

39Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

Motivation Intrinsically disordered regions of proteins play an essential role in the regulation of various biological processes. Key to their regulatory function is often the binding to globular protein domains via sequence elements known as molecular recognition features (MoRFs). Development of computational tools for the identification of candidate MoRF locations in amino acid sequences is an important task and an area of growing interest. Given the relative sparseness of MoRFs in protein sequences, the accuracy of the available MoRF predictors is often inadequate for practical usage, which leaves a significant need and room for improvement. In this work, we introduce MoRFCHiBi-Web, which predicts MoRF locations in protein sequences with higher accuracy compared to current MoRF predictors. Methods Three distinct and largely independent property scores are computed with component predictors and then combined to generate the final MoRF propensity scores. The first score reflects the likelihood of sequence windows to harbour MoRFs and is based on amino acid composition and sequence similarity information. It is generated by MoRFCHiBi using small windows of up to 40 residues in size. The second score identifies long stretches of protein disorder and is generated by ESpritz with the DisProt option. Lastly, the third score reflects residue conservation and is assembled from PSSM files generated by PSI-BLAST. These propensity scores are processed and then hierarchically combined using Bayes rule to generate the final MoRFCHiBi-Web predictions. Results MoRFCHiBi-Web was tested on three datasets. Results show that MoRFCHiBi-Web outperforms previously developed predictors by generating less than half the false positive rate for the same true positive rate at practical threshold values. This level of accuracy paired with its relatively high processing speed makes MoRFCHiBi-Web a practical tool for MoRF prediction.

References Powered by Scopus

Gapped BLAST and PSI-BLAST: A new generation of protein database search programs

63269Citations
N/AReaders
Get full text

The Protein Data Bank

32135Citations
N/AReaders
Get full text

Intrinsically disordered proteins in cellular signalling and regulation

1771Citations
N/AReaders
Get full text

Cited by Powered by Scopus

IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding

955Citations
N/AReaders
Get full text

MobiDB: Intrinsically disordered proteins in 2021

162Citations
N/AReaders
Get full text

MoRFchibi SYSTEM: software tools for the identification of MoRFs in protein sequences

123Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Malhis, N., Wong, E. T. C., Nassar, R., & Gsponer, J. (2015). Computational identification of MoRFs in protein sequences using Hierarchical application of bayes rule. PLoS ONE, 10(10). https://doi.org/10.1371/journal.pone.0141603

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 14

70%

Researcher 4

20%

Professor / Associate Prof. 2

10%

Readers' Discipline

Tooltip

Biochemistry, Genetics and Molecular Bi... 9

53%

Agricultural and Biological Sciences 5

29%

Computer Science 2

12%

Social Sciences 1

6%

Article Metrics

Tooltip
Mentions
Blog Mentions: 1
References: 3

Save time finding and organizing research with Mendeley

Sign up for free