Sucrose transporter2 contributes to maize growth, development, and crop yield

77Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

During daylight, plants produce excess photosynthates, including sucrose, which is temporarily stored in the vacuole. At night, plants remobilize sucrose to sustain metabolism and growth. Based on homology to other sucrose transporter (SUT) proteins, we hypothesized the maize (Zea mays) SUCROSE TRANSPORTER2 (ZmSUT2) protein functions as a sucrose/H+ symporter on the vacuolar membrane to export transiently stored sucrose. To understand the biological role of ZmSut2, we examined its spatial and temporal gene expression, determined the protein subcellular localization, and characterized loss-of-function mutations. ZmSut2 mRNA was ubiquitously expressed and exhibited diurnal cycling in transcript abundance. Expressing a translational fusion of ZmSUT2 fused to a red fluorescent protein in maize mesophyll cell protoplasts revealed that the protein localized to the tonoplast. Under field conditions, zmsut2 mutant plants grew slower, possessed smaller tassels and ears, and produced fewer kernels when compared to wild-type siblings. zmsut2 mutants also accumulated two-fold more sucrose, glucose, and fructose as well as starch in source leaves compared to wild type. These findings suggest (i) ZmSUT2 functions to remobilize sucrose out of the vacuole for subsequent use in growing tissues; and (ii) its function provides an important contribution to maize development and agronomic yield.

Cite

CITATION STYLE

APA

Leach, K. A., Tran, T. M., Slewinski, T. L., Meeley, R. B., & Braun, D. M. (2017). Sucrose transporter2 contributes to maize growth, development, and crop yield. Journal of Integrative Plant Biology, 59(6), 390–408. https://doi.org/10.1111/jipb.12527

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free