An improved phase-partitioning model is proposed for the prediction of the mutual solubility in the CO2-brine system containing Na+, K+, Ca2+, Mg2+, Cl-, and SO42-. The correlations are computationally efficient and reliable, and they are primarily designed for incorporation into a multiphase flow simulator for geology- and energy-related applications including CO2 sequestration, CO2-enhanced geothermal systems, and CO2-enhanced oil recovery. The model relies on the fugacity coefficient in the CO2-rich phase and the activity coefficient in the aqueous phase to estimate the phase-partitioning properties. In the model, (i) the fugacity coefficients are simulated by a modified Peng-Robinson equation of state which incorporates a new alpha function and binary interaction parameter (BIP) correlation; (ii) the activity coefficient is estimated by a unified equilibrium constant model and a modified Margules expression; and (iii) the simultaneous effects of salting-out on the compositions of the CO2-rich phase and the aqueous phase are corrected by a Pizter interaction model. Validation of the model calculations against literature experimental data and traditional models indicates that the proposed model is capable of predicting the phase-partitioning behaviors in the CO2-brine system with a higher accuracy at temperatures of up to 623.15 K and pressures of up to 350 MPa. Using the proposed model, the phase diagram of the CO2+H2O system is generated. An abrupt change in phase compositions is revealed during the transfer of the CO2-rich phase from vapor to liquid or supercritical. Furthermore, the preliminary simulation shows that the salting-out effect can considerably decrease the water content in the CO2-rich phase, which has not been well experimentally studied so far.
CITATION STYLE
Sun, X., Wang, Z., Li, Y., Li, H., He, H., & Sun, B. (2021). Modelling of the Phase-Partitioning Behaviors for CO2-Brine System at Geological Conditions. Lithosphere, 2021(SpecialIssue 1), 01–22. https://doi.org/10.2113/2021/3474828
Mendeley helps you to discover research relevant for your work.