Purpose: The role of fermentation temperature was studied for its impact on the evolution of malolactic fermentation performed by simultaneous inoculum of yeast and bacteria in grape must. Results were discussed considering the different fermentative kinetics and the composition of obtained wines. Methods: Two strains of bacteria belonging to the O. oeni and L. plantarum species were inoculated 24 h after the beginning of the alcoholic fermentation in 2 grape musts having different acidic and sugar profiles. Fermentations were conducted at 3 different temperature profiles (16/22 °C in 3 days, 18/24 °C in 3 days, 22/32 °C in 5 days). Evolution of microbiota was followed by flow cytometry and plate count. Chemical analysis of grape musts and wines were performed by instrumental approaches (FT-IR, enzymatic quantification of malic acid, GC-MS). Results: L. plantarum resulted more efficient in malic acid consumption in the entire set of tests. These results are unexpected because, generally, Lactobacillus has been reported to be more sensitive to an oenological environment than O. oeni. In our experiments, O. oeni resulted inhibited by the highest fermentation temperature profile, causing incomplete malic acid degradation. Similarly, S. cerevisiae showed a higher sensitivity to environmental limiting factors in respect to what is generally known. Differences in the chemical composition of wines were observed in relation to the bacteria strain and the temperature profile. However, the statistical treatment of data identified temperature as the main variable able to influence the features of wines. Conclusions: Simultaneous inoculum of yeast and bacteria in grape must is an alternative approach in the management of malolactic fermentation which showed some interesting features. However, it is necessary to consider that the dynamics of the microbial population are different to that observed in traditional winemaking and the environmental variables act against the microorganisms in a peculiar, and in certain cases unexpected, way.
CITATION STYLE
Guzzon, R., Roman, T., & Larcher, R. (2020). Impact of different temperature profiles on simultaneous yeast and bacteria fermentation. Annals of Microbiology, 70(1). https://doi.org/10.1186/s13213-020-01565-w
Mendeley helps you to discover research relevant for your work.