Transcriptional activation of the insulin-like growth factor-II gene during myoblast differentiation

46Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Insulin-like growth factor-II (IGF-II) is a secreted 67-amino acid peptide that functions principally as a prenatal growth regulator in mammals. To date, the mechanisms involved in the stimulation of IGF-II expression in the embryo and its attenuation after birth are unknown. Recent studies have shown that IGF-II mRNA and protein are induced during the terminal stages of muscle development in vitro, and that IGF-II may act as an autocrine differentiation agent for skeletal myoblasts. We now have investigated the regulation of IGF-II gene expression in muscle cells. Steady state levels of IGF-II mRNA increased by more than 30-fold during terminal differentiation of the C2 mouse myoblast cell line. Transcription run-on experiments using isolated muscle cell nuclei and direct analysis of nuclear RNA each demonstrated a greater than 10-fold rise in nascent IGF-II mRNA during cellular differentiation, and ribonuclease protection experiments showed that more than 95% of IGF-II mRNAs initiated in noncoding exon 3, implying that transcriptional activation occurs principally through promoter 3, the most 3′ of the three mouse IGF-II gene promoters. Analysis of chromatin structure around the IGF-II gene in C2 cells revealed four major and four minor DNase-I-hypersensitive sites, but did not provide insight into the mechanisms of gene activation, since all sites were present in proliferating and differentiating cells. Gene transfer experiments showed that promoter 3 was at least 50-fold more active than promoter 1 or 2 in C2 cells, but the functional assessment of nearly 26 kilobases of additional DNA within the IGF-II locus by an "enhancer trap" approach did not delineate any chromosomal regions capable of mediating differentiation-specific gene activation. Our results demonstrate that muscle cells encode mechanisms for activating IGF-II gene transcription and suggest that these cells may be excellent models for identifying the developmentally regulated factors that control IGF-II gene expresssion.

Cite

CITATION STYLE

APA

Kou, K., & Rotwein, P. (1993). Transcriptional activation of the insulin-like growth factor-II gene during myoblast differentiation. Molecular Endocrinology, 7(2), 291–302. https://doi.org/10.1210/mend.7.2.8469241

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free