We studied wave-created high-density mud suspensions (fluid mud) using a one-dimensional water column (1DV) model that includes k-" turbulence closure at a high vertical resolution with a vertical grid spacing of 1 mm. The k-" turbulence model includes two sediment-related dissipation terms associated with vertical density stratification and viscous drag of flows around sediment particles. To this end, the calibrated model reproduces the key characteristics (maximum concentration and thickness) of fluid mud layers created in laboratory experiments over a large range of wave velocities from 10 to 55 cm/s. The findings demonstrate that the equilibrium near-bed mud concentration, Cb, is solely determined from the balance between erosion and deposition fluxes, whereas the thickness of the fluid mud layer is mainly controlled by sediment-induced density stratification, which dissipates turbulence and hence eliminates turbulent sediment diffusivity at the top of the fluid mud layer, the lutocline. Our model stands in contrast to those that suggest that upward sediment diffusion is close to zero at the interface between the fluid mud layer and the overlying fluid. Instead, our model suggests that the upward diffusive flux of fluid mud flows peak at the lutocline and is compensated for enhanced settling fluxes just above it. Our model findings also support the existence of the gelling-ignition process, which is critical for the development of fluid mud beds in modern sedimentary environments.
CITATION STYLE
Kämpf, J., & Myrow, P. M. (2018). Wave-created mud suspensions: A theoretical study. Journal of Marine Science and Engineering, 6(2). https://doi.org/10.3390/jmse6020029
Mendeley helps you to discover research relevant for your work.