miR-23a, a member of the miR-23a/24-2/27a cluster, has been demonstrated to play pivotal roles in many cellular activities. However, the mechanisms of how bta-miR-23a controls the myogenic differentiation (MD) of PDGFRα- bovine progenitor cells (bPCs) remain poorly understood. In the present work, bta-miR-23a expression was increased during the MD of PDGFRα- bPCs. Moreover, bta-miR-23a overexpression significantly promoted the MD of PDGFRα- bPCs. Luciferase reporter assays showed that the 3’-UTR region of MDFIC (MyoD family inhibitor domain containing) could be a promising target of bta-miR-23a, which resulted in its post-transcriptional down-regulation. Additionally, the knockdown of MDFIC by siRNA facilitated the MD of PDGFRα- bPCs, while the overexpression of MDFIC inhibited the activating effect of bta-miR-23a during MD. Of note, MDFIC might function through the interaction between MyoG transcription factor and MEF2C promoter. This study reveals that bta-miR-23a can promote the MD of PDGFRα- bPCs through post-transcriptional downregulation of MDFIC.
CITATION STYLE
Hu, X., Xing, Y., Ren, L., Wang, Y., Li, Q., Yang, Q., … Zhang, L. (2020). Bta-mir-23a regulates the myogenic differentiation of fetal bovine skeletal muscle-derived progenitor cells by targeting mdfic gene. Genes, 11(10), 1–17. https://doi.org/10.3390/genes11101232
Mendeley helps you to discover research relevant for your work.