Sentiment analysis of French tweets based on subjective lexicon approach: Evaluation of the use of OpenNLP and CoreNLP tools

7Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Nowadays, sentiment analysis is becoming a very important issue of research. This paper present experimentation on sentiment analysis based on subjective lexicon method. This experimentation is tested over French tweets using "Public Opinion Knowledge (POK)" platform. POK is a platform consists in getting public opinion orientation from text extracted from social network and blogs, which we have developed and presented in previous papers. There are three algorithms as classifiers, which are based on Natural Language Processing Tools. The first is based on OpenNLP, the second on CoreNLP and the third on dependency analysis implemented by CoreNLP. Each classifier consists of three steps, which are Part of Speech Tagging (POS), word polarity classification and sentiment classification algorithm. On the one hand, the results are used to evaluate the use of OpenNLP and CoreNLP, on other, they draw to make a comparison between lexicon and machine-learning approaches. So, experimentation leads us to conclude that tools of sentiment analysis based on lexicon are much performant than those based on machine learning and they can reach a rate of precision of 70% and F-measure of 0.7. Also, we conclude that CoreNLP is more efficient than OpenNLP by 3% of precision, this fact is due to the efficiency of Part of Speech tagging algorithms.

Cite

CITATION STYLE

APA

Rhouati, A., Berrich, J., Belkasmi, M. G., & Bouchentouf, T. (2018). Sentiment analysis of French tweets based on subjective lexicon approach: Evaluation of the use of OpenNLP and CoreNLP tools. Journal of Computer Science, 14(6), 829–836. https://doi.org/10.3844/jcssp.2018.829.836

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free