Large-gap peripheral nerve repair using xenogeneic transplants in rhesus macaques

3Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Surgical intervention is required to successfully treat severe, large-gap (≥4 cm) peripheral nerve injuries. However, all existing treatments have shortcomings and an alternative to the use of autologous nerves is needed. Human and porcine nerves are physiologically similar, with comparable dimensions and architecture, presence and distribution of Schwann cells, and conserved features of the extracellular matrix (ECM). We report the repair of fully transected radial nerves in 10 Rhesus Macaques using viable, whole sciatic nerve from genetically engineered (GalT-KO), designated pathogen free (DPF) porcine donors. This resulted in the regeneration of the transected nerve, and importantly, recovery of wrist extension function, distal muscle reinnervation, and recovery of nerve conduction velocities and compound muscle action potentials similar to autologous controls. We also demonstrate the absence of immune rejection, systemic porcine cell migration, and detectable residual porcine material. Our preliminary findings support the safety and efficacy of viable porcine nerve transplants, suggest the interchangeable therapeutic use of cross-species cells, and highlight the broader clinical potential of xenotransplantation.

Cite

CITATION STYLE

APA

Holzer, P., Chang, E. J., Rogers, K., Tarlton, J., Lu, D., Gillespie, N., … Monroy, R. (2023). Large-gap peripheral nerve repair using xenogeneic transplants in rhesus macaques. Xenotransplantation, 30(2). https://doi.org/10.1111/xen.12792

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free