Rapid quantification of sequence repeats to resolve the size, structure and contents of bacterial genomes

24Citations
Citations of this article
96Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The numerous classes of repeats often impede the assembly of genome sequences from the short reads provided by new sequencing technologies. We demonstrate a simple and rapid means to ascertain the repeat structure and total size of a bacterial or archaeal genome without the need for assembly by directly analyzing the abundances of distinct k-mers among reads.Results: The sensitivity of this procedure to resolve variation within a bacterial species is demonstrated: genome sizes and repeat structure of five environmental strains of E. coli from short Illumina reads were estimated by this method, and total genome sizes corresponded well with those obtained for the same strains by pulsed-field gel electrophoresis. In addition, this approach was applied to read-sets for completed genomes and shown to be accurate over a wide range of microbial genome sizes.Conclusions: Application of these procedures, based solely on k-mer abundances in short read data sets, allows aspects of genome structure to be resolved that are not apparent from conventional short read assemblies. This knowledge of the repetitive content of genomes provides insights into genome evolution and diversity. © 2013 Williams et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Williams, D., Trimble, W. L., Shilts, M., Meyer, F., & Ochman, H. (2013). Rapid quantification of sequence repeats to resolve the size, structure and contents of bacterial genomes. BMC Genomics, 14(1). https://doi.org/10.1186/1471-2164-14-537

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free