Electrospun Zinc Oxide Nanofiber Based Resistive Gas/Vapor Sensors - A Review

47Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

Resistive zinc oxide (ZnO) sensors play a pivotal role in detecting various gases and vapors due to their high response, low cost, stability, tunability, and simple fabrication. Hence, it is necessary to know the recent status of research in resistive ZnO sensors. The sensitivity is determined by the reactions at the surface of the nanofiber (NF); therefore, the surface area defines the foremost sensor characteristics. Electrospun metal oxide NFs exhibit a high surface area and unique electrical properties that can be tuned, and they are highly sought as the materials for resistive gas sensors. So far, various strategies are adopted to improve the sensitivity and the selectivity of ZnO NFs. This review summarizes the recent methods utilized by various researchers to improve the sensitivity of the ZnO electrospun metal oxide NF-based resistive gas sensors. Also, it discusses the influence of process parameters on the structure and morphology of ZnO NFs, the mechanism of gas sensing and highlights its improvement through advanced methods. The sensitivity of the NF has been improved through tuning the structure and morphology of NFs and doping. Further, modification of NF sensitivity through functionalization, the addition of carbon nanomaterials, and high-energy irradiation are also discussed. Based on the recent literature, the performance of doped ZnO NF for various gas sensing is highlighted. The outcome of this review gives insight to academic researchers and industry for further investigation and development in resistive gas sensors and its applications.

Cite

CITATION STYLE

APA

Prabhu, N. N., Jagadeesh Chandra, R. B., Rajendra, B. V., George, G., Mourad, A. H. I., & Shivamurthy, B. (2022). Electrospun Zinc Oxide Nanofiber Based Resistive Gas/Vapor Sensors - A Review. Engineered Science. Engineered Science Publisher. https://doi.org/10.30919/es8d612

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free