The emergence and evolution of energy micro-generators during the last 2 decades has delivered a wealth of energy harvesting powering solutions, with the capability of exploiting a wide range of motion types, from impulse and low frequency irregular human motion, to broadband vibrations and ultrasonic waves. It has also created a wide background of engineering energy microsytems, including fabrication methods, system concepts and optimal functionality. This overview presents a simple description of the main transduction mechanisms employed, namely the piezoelectric, electrostatic, electromagnetic and triboelectric harvesting concepts. A separate discussion of the mechanical structures used as motion translators is presented, including the employment of a proof mass, cantilever beams, the role of resonance, unimorph structures and linear/rotational motion translators. At the mechanical-to-electrical interface, the concepts of impedance matching, pre-biasing and synchronised switching are summarised. The separate treatment of these three components of energy microgenerators allows the selection and combination of different operating concepts, their co-design towards overall system level optimisation, but also towards the generalisation of specific approaches, and the emergence of new functional concepts. Industrial adoption of energy micro-generators as autonomous power sources requires functionality beyond the narrow environmental conditions typically required by the current state-of-art. In this direction, the evolution of broadband electromechanical oscillators and the combination of environmental harvesting with power transfer operating schemes could unlock a widespread use of micro-generation in microsystems such as micro-sensors and micro-actuators.
CITATION STYLE
Kiziroglou, M. E., & Yeatman, E. M. (2021, November 1). Micromechanics for energy generation. Journal of Micromechanics and Microengineering. IOP Publishing Ltd. https://doi.org/10.1088/1361-6439/ac2a52
Mendeley helps you to discover research relevant for your work.