Gaussian Process Priors for View-Aware Inference

0Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

While frame-independent predictions with deep neural networks have become the prominent solutions to many computer vision tasks, the potential benefits of utilizing correlations between frames have received less attention. Even though probabilistic machine learning provides the ability to encode correlation as prior knowledge for inference, there is a tangible gap between the theory and practice of applying probabilistic methods to modern vision problems. For this, we derive a principled framework to combine information coupling between camera poses (translation and orientation) with deep models. We proposed a novel view kernel that generalizes the standard periodic kernel in SO(3). We show how this soft-prior knowledge can aid several pose-related vision tasks like novel view synthesis and predict arbitrary points in the latent space of generative models, pointing towards a range of new applications for inter-frame reasoning.

Cite

CITATION STYLE

APA

Hou, Y., Heljakka, A., & Solin, A. (2021). Gaussian Process Priors for View-Aware Inference. In 35th AAAI Conference on Artificial Intelligence, AAAI 2021 (Vol. 9A, pp. 7762–7770). Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v35i9.16948

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free