Leucyl-tRNA synthetase deficiency systemically induces excessive autophagy in zebrafish

6Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Leucyl-tRNA synthetase (LARS) is an enzyme that catalyses the ligation of leucine with leucine tRNA. LARS is also essential to sensitize the intracellular leucine concentration to the mammalian target of rapamycin complex 1 (mTORC1) activation. Biallelic mutation in the LARS gene causes infantile liver failure syndrome type 1 (ILFS1), which is characterized by acute liver failure, anaemia, and neurological disorders, including microcephaly and seizures. However, the molecular mechanism underlying ILFS1 under LARS deficiency has been elusive. Here, we generated Lars deficient (larsb−/−) zebrafish that showed progressive liver failure and anaemia, resulting in early lethality within 12 days post fertilization. The atg5-morpholino knockdown and bafilomycin treatment partially improved the size of the liver and survival rate in larsb−/− zebrafish. These findings indicate the involvement of autophagy in the pathogenesis of larsb−/− zebrafish. Indeed, excessive autophagy activation was observed in larsb−/− zebrafish. Therefore, our data clarify a mechanistic link between LARS and autophagy in vivo. Furthermore, autophagy regulation by LARS could lead to development of new therapeutics for IFLS1.

Cite

CITATION STYLE

APA

Inoue, M., Miyahara, H., Shiraishi, H., Shimizu, N., Tsumori, M., Kiyota, K., … Hanada, T. (2021). Leucyl-tRNA synthetase deficiency systemically induces excessive autophagy in zebrafish. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-87879-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free