Conformal collider physics: Energy and charge correlations

529Citations
Citations of this article
73Readers
Mendeley users who have this article in their library.

Abstract

We study observables in a conformal field theory which are very closely related to the ones used to describe hadronic events at colliders. We focus on the correlation functions of the energies deposited on calorimeters placed at a large distance from the collision. We consider initial states produced by an operator insertion and we study some general properties of the energy correlation functions for conformal field theories. We argue that the small angle singularities of energy correlation functions are controlled by the twist of non-local light-ray operators with a definite spin. We relate the charge two point function to a particular moment of the parton distribution functions appearing in deep inelastic scattering. The one point energy correlation functions are characterized by a few numbers. For = 1 superconformal theories the one point function for states created by the R-current or the stress tensor are determined by the two parameters a and c characterizing the conformal anomaly. Demanding that the measured energies are positive we get bounds on a/c. We also give a prescription for computing the energy and charge correlation functions in theories that have a gravity dual. The prescription amounts to probing the falling string state as it crosses the AdS horizon with gravitational shock waves. In the leading, two derivative, gravity approximation the energy is uniformly distributed on the sphere at infinity, with no fluctuations. We compute the stringy corrections and we show that they lead to small, non-gaussian, fluctuations in the energy distribution. Corrections to the one point functions or antenna patterns are related to higher derivative corrections in the bulk.

Cite

CITATION STYLE

APA

Hofman, D. M., & Maldacena, J. (2008). Conformal collider physics: Energy and charge correlations. Journal of High Energy Physics, 2008(5). https://doi.org/10.1088/1126-6708/2008/05/012

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free