Effects of nitrogen deposition and litter layer management on soil CO2, N2O, and CH4 emissions in a subtropical pine forestland

21Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Forestland soils play vital role in regulating global soil greenhouse gas (GHG) budgets, but the interactive effect of the litter layer management and simulated nitrogen (N) deposition on these GHG flux has not been elucidated clearly in subtropical forestland. A field trial was conducted to study these effects by using litter removal method under 0 and 40 kg N ha−1 yr−1 addition in a subtropical forestland in Yingtan, Jiangxi Province, China. Soil CO2 emission was increased by N addition (18–24%) but decreased by litter removal (24–32%). Litter removal significantly (P < 0.05) decreased cumulative N2O emission by 21% in treatments without N addition but only by 10% in treatments with 40 kg N ha−1 yr−1 addition. Moreover, litter-induced N2O emission under elevated N deposition (0.094 kg N2O-N ha−1) was almost the same as without N addition (0.088 kg N2O-N ha−1). Diffusion of atmospheric CH4 into soil was facilitated by litter removal, which increased CH4 uptake by 55%. Given that the increasing trend of atmospheric N deposition in future, which would reduce litterfall in subtropical N-rich forest, the effect of surface litter layer change on soil GHG emissions should be considered in assessing forest GHG budgets and future climate scenario modeling.

Cite

CITATION STYLE

APA

Fan, J., Luo, R., McConkey, B. G., & Ziadi, N. (2020). Effects of nitrogen deposition and litter layer management on soil CO2, N2O, and CH4 emissions in a subtropical pine forestland. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-65952-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free