Extraordinary magnetoresistance in semiconductor/metal hybrids: A review

29Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

Abstract

The Extraordinary Magnetoresistance (EMR) effect is a change in the resistance of a device upon the application of a magnetic field in hybrid structures, consisting of a semiconductor and a metal. The underlying principle of this phenomenon is a change of the current path in the hybrid structure upon application of a magnetic field, due to the Lorentz force. Specifically, the ratio of current, flowing through the highly conducting metal and the poorly conducting semiconductor, changes. The main factors for the device's performance are: the device geometry, the conductivity of the metal and semiconductor, and the mobility of carriers in the semiconductor. Since the discovery of the EMR effect, much effort has been devoted to utilize its promising potential. In this review, a comprehensive overview of the research on the EMR effect and EMR devices is provided. Different geometries of EMR devices are compared with respect to MR ratio and output sensitivity, and the criteria of material selection for high-performance devices are discussed. © 2013 by the authors.

Cite

CITATION STYLE

APA

Sun, J., & Kosel, J. (2013). Extraordinary magnetoresistance in semiconductor/metal hybrids: A review. Materials. https://doi.org/10.3390/ma6020500

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free