The association of DNA damage response and nucleotide level modulation with the antibacterial mechanism of the anti-folate drug Trimethoprim

48Citations
Citations of this article
87Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Trimethoprim is a widely prescribed antibiotic for a variety of bacterial infections. It belongs to a class of anti-metabolites - antifolates - which includes drugs used against malarial parasites and in cancer therapy. However, spread of bacterial resistance to the drug has severely hampered its clinical use and has necessitated further investigations into its mechanism of action and treatment regimen. Trimethoprim selectively starves bacterial cells for tetrahydrofolate, a vital cofactor necessary for the synthesis of several metabolites. The outcome (bacteriostatic or bactericidal) of such starvation, however, depends on the availability of folate-dependent metabolites in the growth medium. To characterize this dependency, we investigated in detail the regulatory and structural components of Escherichia coli cellular response to trimethoprim in controlled growth and supplementation conditions.Results: We surveyed transcriptional responses to trimethoprim treatment during bacteriostatic and bactericidal conditions and analyzed associated gene sets/pathways. Concurrent starvation of all folate dependent metabolites caused growth arrest, and this was accompanied by induction of general stress and stringent responses. Three gene sets were significantly associated with the bactericidal effect of TMP in different media including LB: genes of the SOS regulon, genes of the pyrimidine nucleotide biosynthetic pathway and members of the multiple antibiotic resistance (mar) regulon controlled by the MarR repressor. However, the SOS response was identified as the only universal transcriptional signature associated with the loss of viability by direct thymine starvation or by folate stress. We also used genome-wide gene knock-out screen to uncover means of sensitization of bacteria to the drug. We observed that among a number of candidate genes and pathways, the effect of knock-outs in the deoxyribose nucleotide salvage pathway, encoded by the deoCABD operon and under the control of the DeoR repressor, was most informative.Conclusion: Transcriptional induction of DNA damage response is an essential feature of the bactericidal effect of trimethoprim. Either the observation of the transcriptional response or DNA damage itself, or both, is made possible by thymine starvation when other folate-dependent metabolites are not limited. The effect of DNA damage by the drug takes place prior to its bactericidal effect, at the beginning of the lag stage of the treatment. Mutations in the deoxyribose nucleotide salvage pathway can affect duration of the lag as well as the rate of killing. This information can be used to postulate certain mechanistic differences between direct thymine starvation in thymidylate synthase deficient mutants and thymine starvation by anti-folate inhibitors. © 2011 Sangurdekar et al; licensee BioMed Central Ltd.

References Powered by Scopus

One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products

12386Citations
N/AReaders
Get full text

Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection

6154Citations
N/AReaders
Get full text

The positive false discovery rate: A Bayesian interpretation and the q-value

1654Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Photocontrol of Antibacterial Activity: Shifting from UV to Red Light Activation

252Citations
N/AReaders
Get full text

Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin

181Citations
N/AReaders
Get full text

Antibiotic-Induced Genetic Variation: How It Arises and How It Can Be Prevented

79Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Sangurdekar, D. P., Zhang, Z., & Khodursky, A. B. (2011). The association of DNA damage response and nucleotide level modulation with the antibacterial mechanism of the anti-folate drug Trimethoprim. BMC Genomics, 12. https://doi.org/10.1186/1471-2164-12-583

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 35

71%

Researcher 11

22%

Professor / Associate Prof. 2

4%

Lecturer / Post doc 1

2%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 24

47%

Biochemistry, Genetics and Molecular Bi... 15

29%

Medicine and Dentistry 6

12%

Immunology and Microbiology 6

12%

Save time finding and organizing research with Mendeley

Sign up for free