Differential vascularization of nematode-induced feeding sites

53Citations
Citations of this article
98Readers
Mendeley users who have this article in their library.

Abstract

Sedentary nematodes are destructive plant pathogens that cause significant yield losses. In the roots of their host plants, cyst nematodes (CNs) and root-knot nematodes (RKNs) induce different, highly specialized feeding sites - syncytia or giant cells (GCs), respectively - to optimize nutrient uptake. We compared the mechanisms by which nutrients are delivered from the model host plant, Arabidopsis, to GCs induced by the RKN Meloidogyne incognita or to syncytia induced by the CN Heterodera schachtii. From previous work, syncytia were known to be symplastically connected to newly formed host phloem composed of sieve elements (SEs) and companion cells. Here we studied the formation of plasmodesmata (PD) during GC and syncytia development by monitoring a viral movement protein that targets branched PD and the development of host phloem during GC formation by applying confocal laser scanning microscopy and immunocytochemistry. Analyses of plants expressing soluble or membrane-anchored green fluorescent protein in their phloem demonstrated symplastic isolation of GCs. GCs were found to be embedded in a tissue that consists exclusively of SEs. These de novo-formed SEs, contained nuclei and were interconnected by secondary PD. A similar interconnection of SEs was observed around syncytia. However, these secondary PD were also present at the SE-syncytium interface, demonstrating the postulated symplastic connection. Our results show that CNs and RKNs, despite their close phylogenetic relatedness, employ fundamentally different strategies to withdraw nutrients from host plants. © 2008 by The National Academy of Sciences of the USA.

Cite

CITATION STYLE

APA

Hoth, S., Stadler, R., Sauer, N., & Hammes, U. Z. (2008). Differential vascularization of nematode-induced feeding sites. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12617–12622. https://doi.org/10.1073/pnas.0803835105

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free