Evaluating Islatravir Administered Via Microneedle Array Patch for Long-Acting HIV Pre-exposure Prophylaxis Using Physiologically Based Pharmacokinetic Modelling

3Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background and Objectives: Technologies for long-acting administration of antiretrovirals (ARVs) for the prevention and treatment of HIV are at the forefront of research initiatives aiming to tackle issues surrounding drug adherence with the current standard of once-daily oral administration. Islatravir (ISL) is an emerging ARV that shows promising characteristics for long-acting prevention and treatment both orally as well as through alternative routes of administration. Microneedle array patches (MAPs) are a pain-free and discreet transdermal delivery technology that offer extended-release administration of nanoparticulate drugs. This study aimed to utilise physiologically based pharmacokinetic (PBPK) modelling to predict the pharmacokinetics resulting from ISL administered via MAP and to identify key MAP characteristics required to sustain effective concentrations over extended dosing intervals. Methods: A PBPK model describing the conversion of ISL to ISL-triphosphate (ISL-TP) and its whole-body disposition was developed and verified against observed clinical data for orally administered ISL in healthy adults. An intradermal PBPK model was integrated with the ISL PBPK model to predict the dose and nanoparticle release rate required for MAP administration strategies capable of achieving a minimum ISL-TP target concentration of 0.05 pmol/106 PBMCs over extended dosing intervals. MAP design was limited to a maximum therapeutic area of 20 cm2 with a dose loading of 4.09 mg/cm2 and a minimum duration of 3 months. Due to the lack of available clinical data, a range of nanoparticle release rates and MAP bioavailability scenarios were simulated to provide an overview of potential clinical outcomes. Results: The ISL PBPK model was successfully verified, with predicted vs observed ratios falling within 0.5–2-fold. ISL MAP doses ranging from 15 to 80 mg were predicted to sustain ISL-TP concentrations above the minimum target concentration at 3, 6 and 12 months after administration. Nanoparticle release rate and MAP bioavailability were found to have a major impact on whether dosing strategies achieved the criteria. Minimum doses of 15 mg and 60 mg with a nanoparticle release rate of 0.0005 h−1 and bioavailability ranging from 25 to 100% were predicted to achieve effective ISL-TP concentrations up to 3 and 6 months, respectively. Doses of 15 mg and 30 mg with a nanoparticle release rate of 0.0005 h−1 were also able to attain the target concentration up to 6 months after MAP administration, albeit with a minimum bioavailability of 75% and 50%, respectively. Furthermore, when simulating a bioavailability of 100%, an 80 mg ISL MAP was predicted to sustain ISL-TP concentrations above the minimum target concentration up to 12 months after administration. Conclusions: The ISL PBPK model successfully predicted ISL and ISL-TP pharmacokinetics across a range of orally administered regimens. The integrated intradermal PBPK model outlined optimal MAP dose and nanoparticle release rates for effective ISL-TP concentrations up to 12 months, providing justification for further investigation of ISL as a candidate for MAP administration.

Cite

CITATION STYLE

APA

Kinvig, H., Cottura, N., Lloyd, A., Frivold, C., Mistilis, J., Jarrahian, C., & Siccardi, M. (2022). Evaluating Islatravir Administered Via Microneedle Array Patch for Long-Acting HIV Pre-exposure Prophylaxis Using Physiologically Based Pharmacokinetic Modelling. European Journal of Drug Metabolism and Pharmacokinetics, 47(6), 855–868. https://doi.org/10.1007/s13318-022-00793-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free