An amorphous single phase and coexistent amorphous and hcp-Mg phases in the Mg-Zn-La system were found to form in the composition ranges of 20 to 40%Zn and 0 to 12%La and 12 to 20%Zn and 0 to 4%La, respectively. The hcp phase has an ellipsoidal morphology and the particle size and interparticle distance are in the range of 5 to 10 nm and 3 to 10 nm, respectively. The mixed phase alloys exhibit high mechanical strength combined with good ductility and the tensile strength (σB) and fracture elongation (εf) at 288 K are 675 MPa and 4.3% for Mg85Zn12La3. The yield strength (σy) decreases from 570 to 150 MPa with increasing temperature from 288 to 368 K, accompanying an increase of εf to 50%. The maximum εf value is obtained near the temperature (≅365 K) at which the hcp Mg phase begins to precipitate. The largest values of σB and εf are considerably larger than those (600 MPa and 2.0%) for amorphous Mg-Zn-La alloys. The increase in σB by the formation of the mixed structure is presumably due to a dispersion hardening of the hcp supersaturated solution which has the hardness higher than that of the amorphous phase with the same composition. © 1992, The Japan Institute of Metals. All rights reserved.
CITATION STYLE
Inoue, A., Nishiyama, N., Kim, S. G., & Masumoto, T. (1992). Fabrication and Mechanical Properties of Mg-Zn-La Amorphous Alloys Containing Nanoscale hcp-Mg Particles. Materials Transactions, JIM, 33(4), 360–365. https://doi.org/10.2320/matertrans1989.33.360
Mendeley helps you to discover research relevant for your work.