Superdiffusion from Nonabelian Symmetries in Nearly Integrable Systems

8Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The Heisenberg spin chain is a canonical integrable model. As such, it features stable ballistically propagating quasiparticles, but spin transport is subballistic at any nonzero temperature: An initially localized spin fluctuation spreads in time t to a width t2/3. This exponent as well as the functional form of the dynamical spin correlation function suggest that spin transport is in the Kardar–Parisi–Zhang (KPZ) universality class. However, the full counting statistics of magnetization is manifestly incompatible with KPZ scaling. A simple two-mode hydrodynamic description, derivable from microscopic principles, captures both the KPZ scaling of the correlation function and the coarse features of the full counting statistics, but remains to be numerically validated. These results generalize to any integrable spin chain invariant under a continuous nonabelian symmetry and are surprisingly robust against moderately strong integrability-breaking perturbations that respect the nonabelian symmetry.

Cite

CITATION STYLE

APA

Gopalakrishnan, S., & Vasseur, R. (2024, March 11). Superdiffusion from Nonabelian Symmetries in Nearly Integrable Systems. Annual Review of Condensed Matter Physics. Annual Reviews Inc. https://doi.org/10.1146/annurev-conmatphys-032922-110710

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free