Additively Manufactured Self-Healing Structures with Embedded Healing Agent Reservoirs

24Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Self-healing materials with the ability to partially or completely restore their mechanical properties by healing the damage inflicted on them have great potential for applications where there is no or only limited access available to conduct a repair. Here, we demonstrate a bio-inspired new design for self-healing materials, where unit cells embedded in the structure are filled with a UV-curable resin and act as reservoirs for the self-healing agent. This design makes the repeated healing of mechanical damage possible. When a crack propagates and reaches one of these embedded reservoirs, the healing agent is released into the crack plane through the capillary action, and after polymerization through UV light exposure, bonds the crack faces. The structures here were fabricated using a stereolithography technique by a layer-by-layer deposition of the material. “Resin trapping” as a unique integration technique is developed for the first time to expand the capability of additive manufacturing technique for creating components with broader functionalities. The self-healing materials were manufactured in one step without any needs for any sequential stages, i.e. filling the reservoir with the healing agent, in contrast with the previously reported self-healing materials. Multiscale mechanical tests such as nanoindentation and three-point bending confirm the efficiency of our method.

Cite

CITATION STYLE

APA

Davami, K., Mohsenizadeh, M., Mitcham, M., Damasus, P., Williams, Q., & Munther, M. (2019). Additively Manufactured Self-Healing Structures with Embedded Healing Agent Reservoirs. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-43883-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free