Mechanisms of dislocation reduction in an Al0.98Ga 0.02N layer grown using a porous AlN buffer

17Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Greatly improved optical properties of Al0.55Ga 0.45N/Al0.65Ga0.35N multiple quantum well (MQW) structures grown on the low dislocation density Al0.98Ga 0.02N layer grown using a porous AlN buffer have been observed by photoluminescence measurement, in comparison with a MQW grown on a normal AlN layer. The mechanism for the dislocation reduction has been explored by transmission electron microscopy. Due to an attraction towards lateral growth fronts, the threading dislocations in the AlN layer bend during the overgrowth, but mainly by small angles, which is different from the 90° bending generally observed in classic epitaxial lateral overgrowth method. The dislocation reduction is realized through two main pathways: enhanced dislocation annihilation due to the small-angle line bending and the termination of dislocations at local free surfaces introduced by the nanoscale voids, produced around the interface between the Al0.98Ga0.02N and AlN layers. © 2006 American Institute of Physics.

Cite

CITATION STYLE

APA

Bai, J., Wang, T., Parbrook, P. J., & Cullis, A. G. (2006). Mechanisms of dislocation reduction in an Al0.98Ga 0.02N layer grown using a porous AlN buffer. Applied Physics Letters, 89(13). https://doi.org/10.1063/1.2358123

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free