RUNX1 DNA-binding mutations and RUNX1-PRDM16 cryptic fusions in BCR-ABL + leukemias are frequently associated with secondary trisomy 21 and may contribute to clonal evolution and imatinib resistance

67Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Acquired molecular abnormalities (mutations or chromosomal translocations) of the RUNX1 transcription factor gene are frequent in acute myeloblastic leukemias (AMLs) and in therapy-related myelodys-plastic syndromes, but rarely in acute lymphoblastic leukemias (ALLs) and chronic myelogenous leukemias (CMLs). Among 18 BCR-ABL+ leukemias presenting acquired trisomy of chromosome 21, we report a high frequency (33%) of recurrent point mutations (4 in myeloid blast crisis [BC] CML and one in chronic phase CML) within the DNA-binding region of RUNX1. We did not found any mutation in de novo BCR-ABL+ ALLs or lymphoid BC CML. Emergence of the RUNX1 mutations was detected at diagnosis or before the acquisition of trisomy 21 during disease progression. In addition, we also report a high frequency of cryptic chromosomal RUNX1 translocation to a novel recently described gene partner, PRDM16 on chromosome 1 p36, for 3 (21.4%) of 14 investigated patients: 2 myeloid BC CMLs and, for the first time, 1 therapy-related BCR-ABL+ ALL. Two patients presented both RUNX1 mutations and RUNX1-PRDM16 fusion. These events are associated with a short survival and support the concept of a cooperative effect of BCR-ABL with molecular RUNX1 abnormalities on the differentiation arrest phenotype observed during progression of CML and in BCR-ABL+ ALL. © 2008 by The American Society of Hematology.

Cite

CITATION STYLE

APA

Roehe-Lestienne, C., Deluche, L., Corm, S., Tigaud, I., Joha, S., Philippe, N., … Preudhomme, C. (2008). RUNX1 DNA-binding mutations and RUNX1-PRDM16 cryptic fusions in BCR-ABL + leukemias are frequently associated with secondary trisomy 21 and may contribute to clonal evolution and imatinib resistance. Blood, 111(7), 3735–3741. https://doi.org/10.1182/blood-2007-07-102533

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free