Due to the digitization and Internet of Things revolutions, the present electronic world has a wealth of cybersecurity data. Efficiently resolving cyber anomalies and attacks is becoming a growing concern in today’s cyber security industry all over the world. Traditional security solutions are insufficient to address contemporary security issues due to the rapid proliferation of many sorts of cyber-attacks and threats. Utilizing artificial intelligence knowledge, especially machine learning technology, is essential to providing a dynamically enhanced, automated, and up-to-date security system through analyzing security data. In this paper, we provide an extensive view of machine learning algorithms, emphasizing how they can be employed for intelligent data analysis and automation in cybersecurity through their potential to extract valuable insights from cyber data. We also explore a number of potential real-world use cases where data-driven intelligence, automation, and decision-making enable next-generation cyber protection that is more proactive than traditional approaches. The future prospects of machine learning in cybersecurity are eventually emphasized based on our study, along with relevant research directions. Overall, our goal is to explore not only the current state of machine learning and relevant methodologies but also their applicability for future cybersecurity breakthroughs.
CITATION STYLE
Sarker, I. H. (2023, December 1). Machine Learning for Intelligent Data Analysis and Automation in Cybersecurity: Current and Future Prospects. Annals of Data Science. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s40745-022-00444-2
Mendeley helps you to discover research relevant for your work.